

Algebraic and Congruence Properties

ALGEBRAIC PROPERTIES

Commutative Property

Associative Property

Distributive Property

ALGEBRAIC PROPERTIES

Substitution Property

Reflexive Property

Symmetric Property

Transitive Property

ALGEBRAIC PROPERTIES

Addition Property of Equality

Subtraction Property of Equality

Multiplication Property of Equality

Division Property of Equality

Applying Algebraic Properties

*Equation:
$$7x - 22 = 4(x + 2)$$

Solution: $7x - 22 = 4(x + 2)$
 $7x - 22 = 4x + 8$
 $3x - 22 = 8$
 $3x = 30$
 $x = 10$

Applying Algebraic Properties

Equation:
$$\frac{5(x-12)}{4} = 3(2x-7)$$
Solution:
$$\frac{5(x-12)}{4} = 3(2x-7)$$

$$5(x-12) = 12(2x-7)$$

$$5x - 60 = 24x - 84$$

$$5x = 24x - 24$$

$$-19x = -24$$

$$x = \frac{24}{19}$$

Name _____

Date_

Properties of Algebra

Write the property of real numbers that justifies each statement.

023-027

1.
$$a + (b + c) = a + (c + b)$$

2.
$$a + (b + c) = (a + b) + c$$

3. If
$$x + 5 = 12$$
, then $x = 7$

4.
$$a + (b + c) = (c + b) + a$$

5. If
$$\frac{t}{3} = 15$$
, then $t = 45$

6.
$$a(b+c) = ab + ac$$

7.
$$\frac{1}{2}(13xy)(8x^2y) = \frac{1}{2}(8x^2y)(13xy)$$

8. If
$$a + b = c$$
, then $b = c - a$

9.
$$2x + 6y = 2(x + 3y)$$

10.
$$\frac{1}{2}(8x^2y) = \left[\frac{1}{2}(8)\right](x^2y)$$

11. If
$$x + y = 6$$
 and $6 = z$, then $x + y = z$

12.
$$6x^2 - 2 - 5x^2 + 14 = 6x^2 - 5x^2 - 2 + 14$$

13. If
$$2m + 14 = v$$
, then $v = 2m + 14$

14.
$$(a+b)(c+d) = (a+b)c + (a+b)d$$

15.
$$-2abc + 7bca = -2abc + 7abc$$

16.
$$a(b+c) = a(b+c)$$

17. If
$$m\angle A + m\angle B = 180^\circ$$
 and $180^\circ = \pi$ radians, then $m\angle A + m\angle B = \pi$ radians

18. If
$$SE + RT = 63$$
 in., then 63 in. $= SE + RT$

Name

Date _____

Properties of Algebra

Directions: Use A–K to name the property demonstrated by the exercises.

- A. Associative Property
- **B.** Commutative Property
- C. Distributive Property
- **D.** Reflexive Property
- E. Symmetric Property
- F. Transitive Property
- G. Substitution Property
- H. Addition Property of Equality
- I. Subtraction Property of Equality
- J. Multiplication Property of Equality
- **K.** Division Property of Equality
- 1. $6x^2 + x = x(6x + 1)$
- 2. $(m\angle 1 + m\angle 2) + m\angle 3 = m\angle 1 + (m\angle 2 + m\angle 3)$
- 3. $(m\angle 1 + m\angle 2) + m\angle 3 = (m\angle 2 + m\angle 1) + m\angle 3$
- 4. If AB + BC = AC, then BC + AB = AC
- 5. 2(AB)(MN) = (AB)(2)(MN)
- **6.** If $m\angle A = m\angle B$ and $m\angle B = 35^{\circ}$, then $m\angle A = 35^{\circ}$
- 7. If AB + BC = AC, then AC = AB + BC
- 8. If $m\angle P m\angle T = 75^\circ$ and $m\angle P = 115^\circ$, then $115^\circ m\angle T = 75^\circ$

9. BD = BD

- 10. If PQ + QR = MN and MN = ST + UV, then PQ + QR = ST + UV
- 11. If AB + BC = AC and BC = 15 cm, then AB + 15 = AC
- **12.** $m\angle ABC = m\angle ABC$
- **13.** AB + BC = PQ, therefore AB = PQ BC
- 14. $m\angle A = m\angle B$, therefore $m\angle A + 90^\circ = m\angle B + 90^\circ$
- **15.** 2(PQ) = 16 m, therefore PQ = 8 m
- **16.** $\text{m}\angle P = \frac{1}{2}\text{m}\angle Q$, therefore $2\text{m}\angle P = \text{m}\angle Q$
- 17. If $m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 = 360^\circ$, and $m\angle 2 + m\angle 3 = 180^\circ$, then $m\angle 1 + m\angle 4 = 180^\circ$
- **18.** If $m\angle P 86^{\circ} = 150^{\circ}$, then $m\angle P = 236^{\circ}$.